Use of surrogate inflammatory markers in the diagnosis & monitoring of patients with severe sepsis

Dr Duncan Wyncoill
Guy’s & St Thomas’ NHS Trust, London

Conflicts of Interest
In the last 3 years I have acted as consultant, or received honoraria/research grants from:
Astellas, Biovo, Covidien, Iskus Health, J&J, Pfizer, Sage & Vygon
Current status

Yes, we do prescribe individually targeted, exclusively formulated medicines - but not for severe sepsis.
Biomarkers in Critical Care

Markers of Inflammation
- C-reactive Protein
- Procalcitonin

Markers of Homeostasis
- Renal: creatinine, urea, electrolytes
- Endocrine: TSH, T3, T4, Cortisol
- Haematology: CD4
- Liver: Albumin

Markers of Cellular Integrity
- Heart: CK-MB, troponin, LDH, BNP
- Liver: AST, ALT, γGT
- Muscle: Myoglobin
- Blood: D-dimer, C3, C4 etc

Markers of Infection
- [TNF, IL-6]
- [Procalcitonin]
- [Protein C]

‘Not much real change in the last decade...’
Molecular medicines & targeted care

Molecular medicine
- Right disease
- Right subtype
- Right drug
- Right patient
- Right dose
- Right duration

Proactive medicine: Disease prediction & prevention
- Less empirical,
 Removal of non-responders
- Risk mitigation
 - Lifestyle
 - Treatment
- Reduce toxicity,
 Improved outcomes
 & Resource utilisation

Diagnostic Proteomics
Discovery Proteomics
Genome-disease correlation

Molecular medicines & targeted care
Definitions of an ‘ideal biomarker’

- Specific
- Sensitive
- Predictive
- Robust
- Bridges preclinical trials
- Non-invasive/accessible/rapid & low cost
‘Types’ of Biomarkers

- Indicator of normal biologic process, pathology, or response to therapeutic intervention

 - Type 0: disease markers - correlate longitudinally with clinical indices

 - Type 1: drug effect markers & correlate with mechanism of action

 - Type 2: used as surrogate end-point; drug efficacy markers & correlate with clinical benefit
What do I want a biomarker to help with?

- **Prognosis & risk?**
 - Low priority

- **Diagnosis in shock (i.e. is it septic shock?)**
 - Possibly

- **Infection in a colonised/inflammatory pt?**
 - Would definitely help in critically ill patients...

- **Tailoring therapy**
 - Monitoring response: could be useful
 - Antibiotic course length: could be very useful
What do I want a biomarker to help with?

- **Prognosis & risk?**
 - Low priority

- **Diagnosis in shock (i.e. is it septic shock?)**
 - Possibly

- **Infection in a colonised/inflammatory pt?**
 - Would definitely help in critically ill patients...

- **Tailoring therapy**
 - Monitoring response: could be useful
 - Antibiotic course length: could be very useful
Biomarkers - a review

- “sepsis” & “biomarker”
- >3,500 references & >180 biomarkers
- Cytokines, chemokines, cell markers, cell receptors, coagulation biomarkers, vascular damage surrogates, vasodilatation, biomarkers of organ dysfunction, acute phase proteins, etc, etc...
- Mainly used for prognosis; very few for diagnosis

Pierrakos C & Vincent JL. Crit Care 2010; 14: R151
Biomarkers - which determine severity of sepsis?

- Single values
- vs. Pneumonia Severity Index
- Overlap +++

FIGURE 4. Prognostic assessment in community-acquired pneumonia. Data are compiled from [61, 64, 101]. CRP: C-reactive protein; ADM: adrenomedullin; ANP: atrial natriuretic peptide; PCT: procalcitonin; PSI: pneumonia severity index. (b–d) p=ns; (e–h) p<0.001.

- CRP
- WCC
- VAS
- T°C
- Copeptin
- Pro-ADM
- Pro-ANP
- PCT

Christ-Crain M & Muller B. *Eur Respir J* 2007; 30: 556-73
Observational study of PCT in ICU patients with pneumonia

What do I want a biomarker to help with?

- **Prognosis & risk?**
 - Low priority

- **Diagnosis in shock (i.e. is it septic shock?)**
 - Possibly

- **Infection in a colonised/inflammatory pt?**
 - Would definitely help in critically ill patients...

- **Tailoring therapy**
 - Monitoring response: could be useful
 - Antibiotic course length: could be very useful
Surviving Sepsis

In patients with SEVERE SEPSIS using the ‘Sepsis Resuscitation Bundle’ saves lives

- Measure the **LACTATE** level (ABG)
- Take **CULTURES** before antibiotic administration
 - Aseptic BC technique
- **FLUID CHALLENGE** if hypotensive or lactate > 2mmol/L
- Administer **ANTIBIOTICS** within 1 hour

Always follow the Trust antibiotic guideline & Infection team advice
Prescribe 1st dose as once only & inform nurse for urgent admin
Document the antibiotic indication & the review/stop date
Multicenter Implementation of a Severe Sepsis and Septic Shock Treatment Bundle

Russell R. Miller III1,2, Li Dong3, Nancy C. Nelson3, Samuel M. Brown1,2, Kathryn G. Kuttler3,4, Daniel R. Probst3, Todd L. Allen3, and Terry P. Clemmer1,2; for the Intermountain Healthcare Intensive Medicine Clinical Program

![Graph showing mortality and total bundle compliance over years.](image-url)
Most patients with severe sepsis score ≥2 SIRS:
- Tachycardia
- Fever or hypothermia
- Tachypnoea
- Abnormal WBC or ↑CRP

Is there a good explanation other than infection?

Assess for organ dysfunction:
- Hypotension
- Lactate > 2mmol/l
- Oliguria < 0.5ml/kg/hr
- Acute confusion
- CXR infiltrates + hypoxia
- Low platelets/abn clotting

Can’t exclude infection

Yes, now what?

How do I tell?

My patient is unwell
Could they have severe sepsis?
Procalcitonin as a diagnostic marker for sepsis: a systematic review & meta-analysis

‘PCT is a helpful biomarker for early diagnosis of sepsis in critically ill patients...

BUT

...it cannot be recommended as a single definitive test’
Biomarker combinations to diagnose infection: a prospective study

- 151 Adults with 2 SIRS, admitted to medical emergency dept
 - 96 bacterial
 - 16 viral
 - 5 parasitic
- Linear model

Kofoed K et al. Crit Care 2007; 11: R38
Prospective, multicenter derivation of a biomarker panel to assess risk of OD, shock & death in severe sepsis patients

What do I want a biomarker to help with?

- Prognosis & risk?
 - Low priority

- Diagnosis in shock (i.e. is it septic shock?)
 - Possibly

- Infection in a colonised/inflammatory pt?
 - Would definitely help in critically ill patients...

- Tailoring therapy
 - Monitoring response: could be useful
 - Antibiotic course length: could be very useful
Case example

- 78 year old lady admitted to ICU with infected leg ulcers, AKI & GI bleed.

- Transfused, fluids vasopressors & antibiotics

10 days into ICU admission

- New fever, moderate PS ventilation (40% oxygen), moderate yellow secretions, pulse 109/min SR, BP 134/48, WCC 20, CRP 68

- CXR: bilateral infiltrates
Case example

More tests? or more antibiotics now? or wait?
Case example

More tests? or more antibiotics now? or wait?

- What if her CRP was 90 the day previously?
Case example

More tests? or more antibiotics now? or wait?

- What if her CRP was 90 the day previously?
- What if her CRP was 40 the day previously?

(i.e. dynamic changes...)
Case example

More tests? or more antibiotics now? or wait?

- What if her CRP was 90 the day previously?
- What if her CRP was 40 the day previously?
 (i.e. dynamic changes...)
- Would measuring her PCT help?
Daily monitoring of biomarkers of sepsis in complicated ICU patients: can it support treatment decisions?

Iapichino G et al. *Minerva Anesthesiol* 2010; 76: 814-23
What do I want a biomarker to help with?

- **Prognosis & risk?**
 - Low priority

- **Diagnosis in shock (i.e. is it septic shock?)**
 - Possibly

- **Infection in a colonised/inflammatory pt?**
 - Would definitely help in critically ill patients...

- **Tailoring therapy**
 - Monitoring response: could be useful
 - Antibiotic course length: could be very useful
CRP as a marker of VAP resolution

Fast response

Slow response

No response

Biphasic response

CRP as a marker of VAP resolution

<table>
<thead>
<tr>
<th></th>
<th>Fast response</th>
<th>Slow response</th>
<th>No response</th>
<th>Biphasic response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Survivors</td>
<td>10</td>
<td>20</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Non-survivors</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>6</td>
</tr>
</tbody>
</table>
PCT kinetics

<table>
<thead>
<tr>
<th>Procalcitonin changes at various time points in patients with bacterial sepsis according to the outcome</th>
<th>Survivors</th>
<th>Nonsurvivors</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCT at D1 ((n = 180; 129 S, 51 NS)^a)</td>
<td>21.7 (52.0)</td>
<td>43.0 (107.4)</td>
<td>0.30</td>
</tr>
<tr>
<td>PCT at D2 ((n = 163; 117 S, 46 NS)^a)</td>
<td>25.7 (41.5)</td>
<td>43.9 (76.3)</td>
<td>0.13</td>
</tr>
<tr>
<td>ΔPCT D1–D2</td>
<td>+1.8 (35.9)</td>
<td>+4.8 (44.6)</td>
<td>0.44</td>
</tr>
<tr>
<td>PCT at D3 ((n = 164; 117 S, 47 NS)^a)</td>
<td>21.3 (41.0)</td>
<td>40.8 (85.7)</td>
<td>0.04</td>
</tr>
<tr>
<td>ΔPCT D2–D3</td>
<td>-4.5 (24.0)</td>
<td>+5.4 (52.3)</td>
<td><0.01</td>
</tr>
<tr>
<td>PCT at D4 ((n = 121; 80 S, 41 NS)^a)</td>
<td>14.0 (29.1)</td>
<td>34.9 (66.6)</td>
<td><0.01</td>
</tr>
<tr>
<td>ΔPCT D1–D4</td>
<td>-3.2 (38.8)</td>
<td>-14.1 (97.8)</td>
<td>0.05</td>
</tr>
<tr>
<td>ΔPCT D3–D4</td>
<td>-5.9 (14.8)</td>
<td>-13.1 (28.2)</td>
<td>0.06</td>
</tr>
</tbody>
</table>

S, survivors; NS, nonsurvivors; PCT, procalcitonin; D1, day sepsis is diagnosed; ΔPCT D1–D2, procalcitonin decrease between day 2 and day 1 after the onset of sepsis, and so forth. aMissing data are due to insufficient serum samples or death of patients within the 1-day, 2-day or 3-day period following the onset of sepsis.
What do I want a biomarker to help with?

- Prognosis & risk?
 - Low priority

- Diagnosis in shock (i.e. is it septic shock?)
 - Possibly

- Infection in a colonised/inflammatory pt?
 - Would definitely help in critically ill patients...

- Tailoring therapy
 - Monitoring response: could be useful
 - Antibiotic course length: could be very useful
The PRORATA Trial

Guidelines for starting of antibiotics*

1. Concentration <0.25 μg/L
 - Antibiotics strongly discouraged

2. Concentration ≥0.25 and <0.5 μg/L
 - Antibiotics discouraged

3. Concentration ≥0.5 and <1 μg/L
 - Antibiotics encouraged

4. Concentration ≥1 μg/L
 - Antibiotics strongly encouraged

*If blood sample taken for calculation of procalcitonin concentration at early stage of episode, obtain a second procalcitonin concentration 6–12 h later.

Guidelines for continuing or stopping of antibiotics

1. Concentration <0.25 μg/L
 - Stopping of antibiotics strongly encouraged

2. Decrease by ≥80% from peak concentration, or concentration ≥0.25 and <0.5 μg/L
 - Stopping of antibiotics encouraged

3. Decrease by <80% from peak concentration, and concentration ≥0.5 μg/L
 - Continuing of antibiotics encouraged

4. Increase of concentration compared with peak concentration and concentration ≥0.5 μg/L
 - Changing of antibiotics strongly encouraged

Bouadma L et al. Lancet 2010; 375: 463-74
The PRORATA Trial

1315 patients with suspected infection assessed for eligibility

685 not enrolled
- 158 expected stay in ICU <3 days
- 138 SAPS II >65
- 104 received antibiotics for >24 h before assessment
- 99 long-term antibiotic treatment needed
- 63 logistical reasons
- 46 do-not-resuscitate orders
- 31 neutropenic
- 15 no medical insurance
- 12 previously enrolled in other studies
- 10 refused consent
- 4 younger than 18 years
- 5 other reasons

630 enrolled and randomly assigned to a treatment group

311 assigned to procalcitonin group
- 4 excluded
 4 withdrew consent

307 included in the analysis (1 lost to follow-up on day 15)

319 assigned to control group
- 5 excluded
 4 withdrew consent
 1 randomised twice

314 included in the analysis (1 lost to follow-up on day 22)
The PRORATA Trial

Figure 3: Kaplan-Meier estimates of the probability of survival

<table>
<thead>
<tr>
<th>Time (days)</th>
<th>Procalcitonin group (Number at risk)</th>
<th>Control group (Number at risk)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>307</td>
<td>314</td>
</tr>
<tr>
<td>10</td>
<td>273</td>
<td>284</td>
</tr>
<tr>
<td>20</td>
<td>255</td>
<td>264</td>
</tr>
<tr>
<td>30</td>
<td>235</td>
<td>249</td>
</tr>
<tr>
<td>40</td>
<td>225</td>
<td>240</td>
</tr>
<tr>
<td>50</td>
<td>219</td>
<td>234</td>
</tr>
<tr>
<td>60</td>
<td>215</td>
<td>231</td>
</tr>
</tbody>
</table>

HR 0.96 (90% CI 0.84–1.09)
The PRORATA Trial

Figure 4: Patients receiving antibiotics for days 1–28

23% fewer AB’s in PCT group

Bouadma L et al. Lancet 2010; 375: 463-74
PCT Guided Antibiotics

Similar survival, but increased & more prolonged organ failure

- The biomarker & antibiotic protocol are ‘linked’
- Both have to be optimally defined

Conclusions

- Need to be much clearer about what question we want a biomarker to answer
- Biomarkers to help recognise those with severe sepsis
 - PCT might be able to help
 - Might a ‘panel’ be better?
- Biomarkers might help in early recognition of treatment failure or inadequacy